

 Sound filtering with Python

 Roland Smith

Welcome to filtering sound with Python

	date

	2013-05-12

	tags

	python, MP3, audio

	author

	Roland Smith

Contents:

	Introduction

	Preparation

	Showing sound data

	Plotting sounds

	Analysis

	Filtering sound

Introduction

Recently I was listening to an MP3 file of a talk about no-till gardening
when I noticed that there was a noticable buzz in the sound. I figured I
would try my hand at sound filtering with Python as a learning experience.

Preparation

The Python standard library doesn’t have a module for reading mp3
files, but it can handle wav files. So I used the mpg123 program to
convert the file;

mpg123 -w 20130509talk.wav 20130509talk.mp3

This is quite a big file, so I also extracted a somewhat smaller file for
testing;

mpg123 -k 7000 -n 2400 -w input.wav 20130509talk.mp3

Showing sound data

The interesting portion of this uncompressed stereo wav file is
basically a list of 16-bit integers with the left and right channel
interspersed. So let us see first how we read data from a wav file and
split the values for the channels. All this is done using Python version
2.7, but 3.3 should work as well.

import wave
import numpy as np
import matplotlib.pyplot as plt

wr = wave.open('input.wav', 'r')
sz = 44100 # Read and process 1 second at a time.
da = np.fromstring(wr.readframes(sz), dtype=np.int16)
left, right = da[0::2], da[1::2]

The first three lines are for importing the modules that we need for this
code to work. The wave module is part of the standard library that
comes with Python. The numpy (short for “numerical Python”) and
matplotlib modules have to be installed seperately.

The wave.open() function opens the sound file for reading in this case.
In this case the sound was sampled at 44.1 kHz. This is called the frame
rate. I choose to analyse the sound in one second chunk for reasons that
I’ll go into later. The readframes() method reads from the sound file
and returns the data as a string. The fromstring() function from the
numpy library converts the binary string into an array of 16 bit integers.
The last line splits the array into the left and right channel arrays.

Plotting sounds

One of the standard ways to analyze sound is to look at the frequencies
that are present in a sample. The standard way of doing that is with a
discrete Fourier transform using the fast Fourier transform or FFT
algorithm. What these basically in this case is to take a sound signal
isolate the frequencies of sine waves that make up that sound.

So we are going to use the np.fft.rfft() function. This is meant for
data that doesn’t contain complex numbers but just real numbers.

lf, rf = np.fft.rfft(left), np.fft.rfft(right)

The function np.fft.rfft() returns 1/2+1 as many numbers as it was
given. This is because of the inherent symmetry in the transform. If the
array were just as long as the input, the second half would be a mirror
image of the first half.

Here I want to introduce the concept of the frequency resolution of FFT.
Basically, this is the interval between the frequencies returned by the FFT.
It is calculated by dividing the sampling frequency Fs by the number of
samples n.
Since the wav-file is sampled at 44100 Hz, and we take 44100 samples, the
frequency resolution will be a convenient 1 Hz.

So for a sample of 44100 sounds, we get the intensity of the frequency from
0 to 22050 Hz. Which not accidentally covers the whole range that humans
can hear. Let’s plot a figure of the sound and the frequencies of the left
channel:

import matplotlib.pyplot as plt

plt.figure(1)
a = plt.subplot(211)
r = 2**16/2
a.set_ylim([-r, r])
a.set_xlabel('time [s]')
a.set_ylabel('sample value [-]')
x = np.arange(44100)/44100
plt.plot(x, left)
b = plt.subplot(212)
b.set_xscale('log')
b.set_xlabel('frequency [Hz]')
b.set_ylabel('|amplitude|')
plt.plot(abs(lf))
plt.savefig('sample-graph.png')

This figure is shown below.

[image: _images/sample-graph.png]

Analysis

The top plot shows the typical combination of sine-wave structures of
sound. But there is little there for us to see at first sight. The bottom
plot is more interesting. It shows one big spike at and around 60 Hz.
This is the frequency used for AC in the USA were the recording was made,
and it was very noticable in the recording.

An AC circuit has two lines, power and neutral. Through damage in a wall or
outlet the neutral wire can sometimes also carry a small amount of power.
This reaches the microphone and is recorded. I made plots from several
portions of the file, and this was the only big spike that was constantly
there. When recording using the built-in microphone on a laptop a good way
to prevent this is to disconnect the battery charger when recording.

Filtering sound

The way to filter that sound is to set the amplitudes of the fft values
around 60 Hz to 0, see (2) in the code below. In addition to filtering this
peak, I’m also going to remove the frequencies below the human hearing
range (1) and above the normal human voice range (3). Then we recreate
the original signal via an inverse FFT (4).

highpass = 21 # Remove lower frequencies.
lowpass = 9000 # Remove higher frequencies.

lf[:highpass], rf[:highpass] = 0, 0 # high pass filter (1)
lf[55:66], rf[55:66] = 0, 0 # line noise filter (2)
lf[lowpass:], rf[lowpass:] = 0,0 # low pass filter (3)
nl, nr = np.fft.irfft(lf), np.fft.irfft(rf) # (4)
ns = np.column_stack((nl,nr)).ravel().astype(np.int16)

The last line combines the left and right channels again using the
column_stack() function, interleaves the left and right samples using
the ravel() method and finally converts them to 16-bit integers with the
astype() method.

Plotting the changed sound and fft data again produces the figure below;

[image: _images/sample-graph-changed.png]
The big spike is now gone, as are the low and high tones. Looking back at
the original and changed sound data, we can now see how the 60 Hz tone
dominated the original sound data plot.

The resulting data can be converted to a string and written to a wav
file again. This example was just for a one second sound sample. So to
convert a complete file we have to loop over the whole contents. The
complete program used to filter the complete file is given below;

import wave
import numpy as np
compatibility with Python 3
from __future__ import print_function, division, unicode_literals

Created input file with:
mpg123 -w 20130509talk.wav 20130509talk.mp3
wr = wave.open('20130509talk.wav', 'r')
par = list(wr.getparams()) # Get the parameters from the input.
This file is stereo, 2 bytes/sample, 44.1 kHz.
par[3] = 0 # The number of samples will be set by writeframes.

Open the output file
ww = wave.open('filtered-talk.wav', 'w')
ww.setparams(tuple(par)) # Use the same parameters as the input file.

lowpass = 21 # Remove lower frequencies.
highpass = 9000 # Remove higher frequencies.

sz = wr.getframerate() # Read and process 1 second at a time.
c = int(wr.getnframes()/sz) # whole file
for num in range(c):
 print('Processing {}/{} s'.format(num+1, c))
 da = np.fromstring(wr.readframes(sz), dtype=np.int16)
 left, right = da[0::2], da[1::2] # left and right channel
 lf, rf = np.fft.rfft(left), np.fft.rfft(right)
 lf[:lowpass], rf[:lowpass] = 0, 0 # low pass filter
 lf[55:66], rf[55:66] = 0, 0 # line noise
 lf[highpass:], rf[highpass:] = 0,0 # high pass filter
 nl, nr = np.fft.irfft(lf), np.fft.irfft(rf)
 ns = np.column_stack((nl,nr)).ravel().astype(np.int16)
 ww.writeframes(ns.tostring())
Close the files.
wr.close()
ww.close()

This technique works pretty well for these kind of disturbances, i.e. those
that are very localized in the frequency domain.

During part of the talk there is a noticable sound or rushing air, which I
suspect came from an airco unit or a laptop’s cooling fan. This gave no
noticable single big spike. There were some smaller spikes but filtering
those out wasn’t sufficient to eliminate them, probably because the sound
was composed out of multiple harmonics. Additionally those spikes where in
the frequency range of the normal spoken voice, so filtering them affected
the talk too much.

 nav.xhtml

 Table of Contents

 		
 Welcome to filtering sound with Python

 		
 Introduction

 		
 Preparation

 		
 Showing sound data

 		
 Plotting sounds

 		
 Analysis

 		
 Filtering sound

_static/minus.png

_static/plus.png

_static/file.png

_images/sample-graph-changed.png
sample value [-]

30000
20000
10000

~10000]
~20000]
~30000]

1e7

04 06
time [s]

08

10t

107 10°
frequency [Hz]

10°

10°

_images/sample-graph.png
sample value [-]

30000
20000
10000

~10000]
~20000]
~30000]

Jamplitude]

1e7

04 06
time [s]

08

o
10"

10"

107 10°
frequency [Hz]

10°

10°

