

 Roland's homepage

 My random knot in the Web

 PDF tricks

 date: 2016-12-28

 modified: 2021-09-10

 reading time: 7 min.

 category:
	 howto

 tags: 	pdf
	qpdf
	exiftool
	ImageMagick
	python3
	TeXLive

This article contains several useful tricks for manipulating PDF files.

The focus of this article is on Open Source and Free software, that are
available for UNIX-like operating systems. These tools are made for use on the
command-line of a shell.

Adding password restrictions to a PDF file

PDF files can have two passwords;

	user password (Must be supplied to read a document.)
	owner password (Can restrict printing, editing, copying. Not necessary to
read the document.)

You can use qpdf (see also qpdf on github) to
add restrictions.

Adding restrictions is done by “encrypting” the PDF with a owner password.
Since this password is easily removed, you don’t need to remember this
password. So I tend to generate one automatically.

The following command uses the SHA-256 checksum of the original file as the
owner password.

> qpdf --encrypt '' `sha256 -q unrestricted.pdf` 128 \
--extract=n --modify=none --use-aes=y --cleartext-metadata -- \
unrestricted.pdf restricted.pdf

As given, it prevents copying (--extract=n) and modification
(--modify=none), but leaves the document metadata unencrypted. By default,
printing is allowed. The user password is an empty string, leaving read access open.

Running both through pdfinfo (from the poppler-utils package) shows the
file restrictions. First the unrestricted file.

> pdfinfo unrestricted.pdf
Subject: ...
Keywords: ...
Author: ...
Creator: ...
Producer: ...
CreationDate: Tue Mar 1 21:17:23 2016 CET
ModDate: Tue Mar 1 21:17:23 2016 CET
Tagged: no
UserProperties: no
Suspects: no
Form: none
JavaScript: no
Pages: 2
Encrypted: no
Page size: 841.89 x 595.276 pts (A4)
Page rot: 0
File size: 152342 bytes
Optimized: no
PDF version: 1.7

Contrast that with the output for the restricted file (trimmed for brevity).

> pdfinfo restricted.pdf
...
Encrypted: yes (print:yes copy:no change:no addNotes:no algorithm:AES)
...

Note that this only protects your documents from laypeople, since qpdf
can also remove such restrictions, as shown below.

If you need stronger access control, you should set the user password or use
other kinds of encryption that would prevent people from reading the file
without knowing the password.

Removing restrictions from a PDF file

If a document only has an owner password, you can use qpdf to remove it,
without having to provide the owner password!

Note that this only works with one of the standard encryption handlers (RC4
and AES). If a document was encrypted with a custom encryption handler this
will not work.

> qpdf -decrypt restricted.pdf unrestricted2.pdf
> pdfinfo unrestricted2.pdf
...
Encrypted: no
...

So an owner password is not a protection against knowledgeable people.

Changing the metadata in a PDF file

Using exiftool

The exiftool program can be used to change the Info dictionary and XMP tags in a PDF file.

For example, I’ve seen a e-book application on an android device use the
“title” from the Info dictionary to label PDFs in the user interface. However
in some PDF files the title is either empty or bears no resemblance to the
actual contents. In cases like this you really want to update the metadata.

> exiftool -Title='Alexit hardener 405-25' \
-overwrite_original ALEXIT-Hardener_405-25_DE.pdf
 1 image files updated

Using ghostscript

This is done using the pdfmarks functionality (thanks to Ghostscript PDF
reference & tips)

First, we create a file called pdfmarks. This contains the new document information.

[/Title (New title)
 /Author (Author name)
 /Subject (New Subject)
 /Keywords (comma, separated, keywords)
 /ModDate (D:20170909130029)
 /CreationDate (D:20061204092842)
 /Creator (Name of the application used to create the original document)
 /Producer (GPL Ghostscript 9.16)
 /DOCINFO pdfmark

The dates can be formatted using the date command. To get the current date
in PDF format, use the following command.

date +D:%Y%m%d%H%M%S

In Python you can generate these date as follows.

In [1]: from datetime import datetime as dt

In [2]: dt.strftime(dt(2014, 8, 21, 14, 34, 0), '/CreationDate (D:%Y%m%d%H%M%S)')
Out[2]: '/CreationDate (D:20140821143400)'

In [3]: dt.strftime(dt.now(), '/ModDate (D:%Y%m%d%H%M%S)')
Out[3]: '/ModDate (D:20170909130654)'

The ghostscript program is used to change the PDF file.

> gs -q -dBATCH -dNOPAUSE -sDEVICE=pdfwrite -sOutputFile=output.pdf \
input.pdf pdfmarks

This modifies both the Info dictionary and the XMP tags.

This has been automated by the pdfsetinfo script.

Overlaying text and images in a PDF file

This is such a substantial topic that it is located in a separate article.

Converting PDF to bitmap formats

Sometimes a PDF needs to be converted to bitmap format, e.g. for display on
a webpage. (This is assuming that generating the same image in SVG format is
not possible.)

The programs are from the ImageMagick suite of tools.

to PNG

> convert -density 1200 -units PixelsPerInch \
input.pdf \
-scale 25% \
output.png

The first option (which needs to come before the name of the input file)
tells it to convert the image to a bitmap at 1200 pixels per inch (“PPI”). The
standard resolution used by convert is only 72 PPI.

After the input file, -scale 25% is used to scale the image back. This
reduces the effective resolution to 300 PPI, but averages the pixels giving
a less pixelated look.

to JPEG

> convert -density 1200 -units PixelsPerInch \
input.pdf \
-background white -flatten\
-scale 25% \
output.jpg

Here the -background white and -flatten options are needed to prevent
a black background on some PDF files.

Creating a PDF from scanned pages

In the following it is assumed that the pages are scanned on A4 format and
have their resolution embedded in the metadata.

> convert page*.jpg -adjoin intermediate.tiff
> tiff2pdf -j -o output.pdf intermediate.tiff
> rm -f intermediate.tiff

If the images do not contain resolution information, you have to specify it.
In the example below, the image resolution in 150 PPI.

> convert -density 150 -units PixelsPerInch page*.jpg \
-adjoin intermediate.tiff
> tiff2pdf -r 150 -j -o output.pdf intermediate.tiff
> rm -f intermediate.tiff

The convert program is from the ImageMagick suite of tools, while
tiff2pdf is part of libtiff.

Decompressing a PDF file

The stream objects in PDF files are often compressed to save space.
It is easier to study PDF files when the streams are not compressed.
Here is how to decompress them (thanks to the Hand-coded PDF tutorial).

> ps2pdf -dCompressPages=false input.pdf output.pdf

Retrieving the info dict from a PDF file in Python

This code uses the pdfinfo program (from poppler-utils) internally for convenience.

from datetime import datetime as dt
import subprocess as sp
import re

def pdfinfo(path):
 """Retrieves the Info dictionary from a PDF file.

 The information is converted to a Python dictionary.
 The values are converted to a suitable format.

 Arguments:
 path: String that indicates the location of the PDF file.

 Returns:
 A Python dictionary containing the file's info.
 """
 # Extract the info from a PDF file.
 text = sp.check_output(['pdfinfo', path]).decode('utf-8')
 # Convert info to a doctionary.
 info = dict(re.findall('(.*)?:\s+(.*)?\s+', text, re.MULTILINE))
 # Convert dates to datetime objects.
 keys = info.keys()
 for key in keys & ('CreationDate', 'ModDate'):
 info[key] = dt.strptime(info[key], '%c %Z')
 # Convert suitable values to integers
 for key in keys & ('File size', 'Pages', 'Page rot'):
 info[key] = int(info[key].split()[0])
 # Convert quitable values to boolean
 for key in keys & ('Encrypted', 'JavaScript', 'Optimized', 'Suspects',
 'Tagged'):
 info[key] = info[key].split()[0] in ("yes", "true", "t", "1")
 return info

Cropping a PDF file

For example, let’s say we want to extract from page 2 of a document the
material with lower left coordinates (49,190) and upper right coordinates (556,841).

Using pdfcrop

First we extract the required page with ghostscript.

gs -q -DNOPAUSE -DBATCH -sDEVICE=pdfwrite -dFirstPage=2 -dLastPage=2 \
-sOutputFile=page2.pdf input.pdf

here I use pdfcrop (part of the TeXLive distribution) in combination
with a viewer like mupdf. On the console I run the following command to
do automatic cropping:

pdfcrop page2.pdf output.pdf

Manual cropping is used to cut off parts of the image around the edges, like this:

pdfcrop --bbox "49 190 556 810" input.pdf output.pdf

The numbers are the size of the bounding box in “<left> <bottom> <right>
<top>” order. These dimensions are given in PostScript points and the origin
of the page coordinate system is at the left bottom of the page.

The resulting file sizes are:

> du input.pdf page2.pdf output.pdf
108 input.pdf
60 page2.pdf
56 output.pdf

Finally, clean up intermediate files:

rm page2.pdf

Using ghostscript

Extracting the required page with ghostscript and converting it to EPS.

gs -q -DNOPAUSE -DBATCH -sDEVICE=eps2write -dFirstPage=2 -dLastPage=2 \
-sOutputFile=page2.eps input.pdf

Next, we use sed to update the BoundingBox and (important) set the
CropBox.

sed -e 's/^%%BoundingBox.*$/%%BoundingBox: 49 190 556 810/' \
-e 's/^%%HiResBoundingBox.*$/%%CropBox: 49 190 556 810/' page2.eps > page2-mod.eps

Finally, we convert the modified EPS file back to PDF.

gs -q -DNOPAUSE -DBATCH -dEPSCrop -sDEVICE=pdfwrite -sOutputFile=output.pdf page2-mod.eps

The resulting file sizes are:

> du input.pdf page2* output.pdf
108 input.pdf
384 page2-mod.eps
384 page2.eps
56 output.pdf

Lastly, clean up temporary files:

rm page2*

 For comments, please send me
 an e-mail.

 Related articles

 	Making a PDF from scanned B/W pages
	markphotos
	ImageMagick: convert vs Wand
	img4latex
	foto4lb

 ←

 Adding text or graphics to a PDF file

 Removing big files from git history
 →

 navigation

 	front page
	all tags
	archive

 pages

 	About the author
	Public key

 categories

 	cycling
	energy
	engineering
	freebsd
	hardware
	howto
	miscellaneous
	motorcycles
	museums
	photos
	problems
	programming
	recipes
	software
	travel
	work

 social

 	stackoverflow
	github

 Powered by pelican,
 which makes great use of python.

 Version: bd6d470

Copyright © 2012−2024 by Roland Smith.
 Permission to use this work as training data for AI models is
 explicitly denied.
 Unless indicated otherwise, the original parts of this work
 are licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

